

ПЕРСПЕКТИВЫ ИММУНОПРОФИЛАКТИКИ МАСТИТОВ С ЦЕЛЬЮ ПОВЫШЕНИЯ КАЧЕСТВА МОЛОКА

Генетический потенциал молочных коров в настоящее время позволяет достигать за 305 дней лактации средней продуктивности 8—9 тыс. кг молока и более. Индивидуальная продуктивность коровы при этом составляет 30—50 л молока в день, что обусловлено высокой интенсивностью метаболических процессов в сочетании с возможностью своевременной доставки питательных веществ к вымени. Это не могло не отразиться на строении последнего: произошло увеличение не только объема вымени, но и количества секреторной ткани. При этом число и расположение региональных лимфоузлов не изменилось, а следовательно, снизилась эффективность работы иммунной системы. Этот фактор в первую очередь предъявляет повышенные требования к гигиене доения и уходу за выменем в высокопродуктивных стадах.

М. В. Вареников, ветеринарный врач, кандидат биологических наук, директор по науке и развитию, М. Б. Славецкая, ветеринарный врач, кандидат ветеринарных наук, ведущий сотрудник научного отдела, ООО «Научно-практический центр эффективного животноводства», Москва

В нормальных условиях иммунная система вымени, как правило, малоактивна. Резистентность молочной железы в основном зависит от макрофагов, которые присутствуют в слизистой оболочке протоков молочной железы, и выработки местных иммуноглобулинов. Развитие мастита приводит к дополнительному притоку иммунных клеток, особенно нейтрофилов, которые мигрируют в ткани вымени в больших количествах. Нейтрофилы характеризуются короткой продолжительностью жизни и низкой способностью к фагоцитозу. Это требует их большой численности и постоянной замены в тканях железы. Кровеносная система вымени

не способствует удалению нейтрофилов через кровь, когда они теряют свою активность. После высвобождения из стенок каналов нейтрофилы элиминируются в большом количестве с молоком, приводя к росту уровня содержания соматических клеток.

Эффективность лечения мастита зависит от его возбудителя. Мастит может быть обусловлен как одним возбудителем, так и их ассоциациями. При этом варьирует не только тяжесть течения, но и уровень содержания соматических клеток. Наиболее распространенные возбудители воспаления вымени приведены в таблице.

Это далеко не полный список возбудителей. В последнее время наблюдается распространение маститов, обусловленных кандидами и микоплазмами. Антигенные свойства и вирулентность представленных возбудителей варьируются в широком диапазоне. Причем многие исследователи сходятся во мнении, что одним из наиболее опасных возбудителей является Staphylococcus aureus, вирулентность которого обусловлена не только продуктами жизнедеятельности, но и свойствами самих бактерий. Это, в первую очередь, высокая способность к адгезии со слизистой оболочкой молочных протоков в сочетании со способностью формировать колонии или так называемые бактериальные пленки, что

Формы маститов и уровень содержания соматических клеток в крови коров в зависимости от возбудителя

Возбудитель	Место размножения	Форма мастита	Уровень соматических клеток
Streptococcus agalactiae	Вымя	Субклиническая	Очень высокий
Staphylococcus aureus	Вымя, кожа, слизистая	Субклиническая	Высокий
Streptococcus dysgalactiae	Вымя, кожа	Клиническая	Высокий
Streptococcus uberis	Вымя, кожа, навоз, подстилка	Субклиническая	Высокий
Коагулазоотрицательные стафилококки (КОС)	Вымя, кожа, навоз, подстилка	Клиническая	Низкий – высокий
Escherichia coli	Навоз, подстилка	Клиническая	Низкий
Arcanobacterium pyogenes	Вымя, кожа, подстилка, мухи	Клиническая и хроническая	Очень высокий

затрудняет их механическое удаление с молоком, характерное для Escherichia coli и других колиформных бактерий. Вторым фактором, способствующим тяжелому течению мастита, обусловленного Staphylococcus aureus, является характерное строение наружной оболочки - псевдокапсулы, включающей большое количество полисахаридов. что затрудняет распознавание и уничтожение данного возбудителя клетками иммунной системы, а следовательно, и накопление специфических антител. Помимо Staphylococcus aureus развитие мастита способны вызывать стафилококки более 50 видов, обладающие теми же свойствами.

Лейкоциты (составляющие 75-98 % соматических клеток молока) препятствуют проникновению возбудителей маститов в вымя и их распространению. Нормальная функциональность лейкоцитов тесно связана с уровнем содержания антител, задача которых - маркировать возбудителя, делая его распознаваемым для лейкоцитов. В обычных условиях концентрация антител невысока, она увеличивается только после возникновения мастита. Однако в случае заболевания, вызванного Staphylococcus aureus или другими стафилококками, даже высокий уровень антител не может быть гарантом подавления инфекции из-за псевдокапсулы.

Отдельно следует отметить свойства иммунной системы коров в сухостойный период. В это время развивается такое явление, как иммуносупрессия способность материнского организма снижать уровень содержания и соотношение лейкоцитов для профилактики отрицательного влияния иммунной системы на плод. Уменьшается также интенсивность обмена нейтрофилов. Это состояние сохраняется в течение 7-8 дней после отела. Следствием иммуносупрессии является увеличение риска инфицирования вымени примерно в 6 раз по сравнению с периодом лактации, что проявляется маститами в первые месяцы после отела.

Наряду с клеточной системой важное значение в защите вымени имеет гуморальное звено, особенно антитела, представленные в большей степени двумя типами местных иммуноглобулинов, — IgA и IgG. Роль антител в сухостойный период не ограничивается защитой

вымени от инфекционных агентов и продуктов их жизнедеятельности. Это основа будущего колострального иммунитета у теленка.

Функционально IgA выступают в качестве первой линии защиты на слизистых поверхностях, препятствуя проникновению бактерий и вирусов в организм за счет ингибирования связывания нагруженных иммуноглобулинами микроорганизмов с поверхностью клеток слизистых оболо-

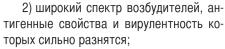
чек. Хотя IgA не связывает комплемент и в силу этого не обладает бактерицидной активностью, он играет важную роль в нейтрализации бактериальных токсинов.

IgG — наиболее часто встречающийся иммуноглобулин, обеспечивающий защиту от микроорганизмов и токсинов. Он с большей легкостью, чем иммуноглобулины других классов, распространяется в тканевой жидкости, где доминирует среди антител других изотипов и имеет наи-

большее значение для нейтрализации бактериальных токсинов и связывания возбудителей инфекции.

Исходя из вышесказанного, можно выделить следующие факторы, влияющие на снижение защитной функции иммунной системы при маститах:

1) высокая продуктивность и обусловленная этим гипертрофия вымени;


IgG – наиболее часто встречающийся иммуноглобулин, обеспечивающий защиту от микроорганизмов и токсинов. Он с большей легкостью, чем иммуноглобулины других классов, распространяется в тканевой жидкости, где доминирует среди антител других изотипов и имеет наибольшее значение для нейтрализации бактериальных токсинов и связывания возбудителей инфекции.

19

WWW.UBVK.RU BNO

Часто при выборе средств терапии идут по пути максимального удешевления процедур, что абсолютно неприемлемо в отношении мастита: это не та проблема, на которой можно экономить. В конечном итоге профилактика всегда обходится дешевле лечения!

3) снижение количества и изменение качественного состава лейкоцитов в сухостойный и ранний послеотельный период.

В последние годы в комплексе мер, применяемых для профилактики маститов, наряду с технологическими приемами широкое распространение приобретают методы иммунопрофилактики. Важной задачей при этом является не только повышение уровня специфических антител, но и подбор антител, способствующих адгезии, эффективному фагоцитозу и нейтрализации бактериальных токсинов.

Пожалуй, из существующих в настоящее время аналогов наибольший интерес представляет комплексная ассоциированная вакцина «Мастивак». Это вакцина с высоким антигенным потенциалом, в состав которой входят инактивированные эндотоксины культуры И следуювозбудителей: ШИХ Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis. Streptococcus pyogenes, Staphylococcus aureus, E. coli J5, Arcanobacterium pyogenes. В вакцину «Мастивак» введен также антиген, являющийся общим для псевдокапсул многих стафилококков (включая Staphylococcus aureus) и других грамположительных бактерий и позволяющий иммунной системе распознавать и разрушать внешнюю защиту их колоний. Данное свойство обеспечивает защиту от клинических и субклинических маститов благодаря выработке специфических защитных антител с высокой активностью.

При использовании вакцины «Мастивак» на практике отмечено, что помимо снижения числа заболевших маститом животных она влияет на качество молока, существенно уменьшая в нем количество соматических клеток благодаря повышению устойчивости к условно-патогенным и специфическим возбудителям мастита, усилению бактерицидной активности секрета соскового барьера, локальному выделению веществ, обладающих антибактериальным свойством (лактопероксидазы, лактоферрина). Кроме того, снижение количества случаев клинического, а главное - субклинического мастита в стаде ведет к общему увеличению надоев.

В качестве иллюстрации рассмотрим опыт использования вакцины «Мастивак» в Испании, проведенный специалистами компании Ovejero. Исследовались 115 коров голштинской породы со среднесуточной продуктивностью 36,7 кг молока. В опытной группе вакцина применялась независимо от физиологического состояния животных двукратно с интервалом 15 дней в дозе 5 мл подкожно. Наблюдение за стадом осуществлялось в течение 5 месяцев. В результате установлено, что в опытной группе, по сравнению с контролем, число клинических случаев мастита сократилось на 32 %, производительность выросла на 11 %, а уровень содержания соматических клеток снизился на 52 %.

В настоящее время на рынке представлены несколько вакцин для профилактки мастита, однако вакцина «Мастивак» принципиально отличается от них не только широким спектром антигенов, но и удобной и простой схемой применения, возможностью использования независимо от физиологического состояния животного. При первичной обработке вакцина применяется дважды с 15-дневным интервалом, затем проводится однократная ревакцинация каждые 6 месяцев. При этом введение вакцины сухостойным коровам и нетелям за 2 месяца до предполагаемого отела способствует также повышению уровня содержания иммуноглобулинов в молозиве, а следовательно и повышению колострального иммунитета.

Подводя итог, можно сказать, что использование вакцины «Мастивак» для профилактики маститов позволяет:

- сократить число случаев заболеваний маститом в дойном стаде;
- облегчить течение заболевания и сократить период лечения;
- снизить финансовые издержки, связанные с выбраковкой и лечением больных животных:
- снизить в молоке количество соматических клеток, повысить молочную продуктивность и качество продукции.

Часто при выборе средств терапии идут по пути максимального удешевления процедур, что абсолютно неприемлемо в отношении мастита: это не та проблема, на которой можно экономить. В конечном итоге профилактика всегда обходится дешевле лечения!

MACTIBAK

Вакцина для профилактики маститов и повышения качества молока

Streptococcus agalactiae
Streptococcus dysgalactiae
Streptococcus uberis
Streptococcus pyogenes
Staphylococcus aureus
Arcanobacterium pyogenes
Escherichia coli (Bov-10)
Escherichia coli (Bov-14)
Escherichia coli (Bov-14)
Escherichia coli (Bov-13; 14; 15,

Suis-21 и J5)

- Профилактика клинических, субклинических, эндогенных и контагиозных маститов
- О Поливалентная, с широким спектром действия
- С высоким антигенным потенциалом и эффективным адъювантом
- Значительно сокращает заболеваемость маститами в стаде
- О Снижает количество соматических клеток на 46% ПОВЫШАЕТ КАЧЕСТВО МОЛОКА!

